95

Role of Endophytes, Plant Growth Promoting Rhizobacteria

Subramanian, P., Mageswari, A., Kim, K., Lee, Y., & Sa, T., (2015). Psychrotolerant

endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in

tomato plants (Solanum lycopersicum mill.) by activation of their antioxidant capacity. Mol.

Plant Microb. Int., 28, 1073–1081.

Suman, A., Gaur, A., Shrivastava, A. K., & Yadav, R. L., (2005). Improving sugarcane growth

and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant. Growth.

Regul., 47, 155–162.

Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmeuller, R., & Lou, B., (2010).

Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating

antioxidant enzymes, the expression of drought-related genes and the plastid-localized

CAS protein. J. Plant Physiol., 167, 1009–1017.

Suzuki, S., He, Y., & Oyaizu, H., (2003). Indole-3-acetic acid production in Pseudomonas

fluorescens HP72 and its association with suppression of creeping bentgrass brown patch.

Curr. Microbiol., 47, 138–143.

Theocharis, A., Clement, C., & Barka, E. A., (2012). Physiological and molecular changes in

plants grown at low temperatures. Planta, 235, 1091–1105.

Tian, C., Feng, G., Li, X., & Zhang, F., (2004). Different effects of arbuscular mycorrhizal

fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl. Soil Ecol.,

26, 143–148.

Timmusk, S., & Wagner, E. G. H., (1999). The plant-growth-promoting rhizobacterium

Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A

possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe

Interact., 12, 951–959.

Ting, A. S. Y., Mah, S. W., & Tee, C. S., (2012). Evaluating the feasibility of induced host

resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for

Fusarium wilt in banana plantlets. Biol. Control., 61, 155−159.

Verma, H., Kumar, D., Kumar, V., Kumari, M., Singh, S. K., Sharma, V. K., Droby, S., et al.,

(2021). The potential application of endophytes in management of stress from drought and

salinity in crop plants. Microorganisms, 9, 1729.

Vivas, A., Marulanda, A., Ruiz-Lozano, J. M., Barea, J. M., & Azcon, R., (2003). Influence of

a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant

responses to PEG-induced drought stress. Mycorrhiza, 13, 249–256.

Vos, C., Tesfahun, A., Panis, B., De Waele, D., & Elsen, A., (2012). Arbuscular mycorrhizal

fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne

incognita and the migratory nematode Pratylenchus penetrans. Appl. Soil Ecol., 61, 1–6.

Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R., (2007). Heat tolerance in plants: An

overview. Environ. Exp. Bot., 61, 199–223.

Wang, C., Wang, C., Gao, Y. L., Wang, Y. P., & Guo, J. H., (2016). A consortium of three plant

growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers

a better tolerance to chilling stress. J. Plant. Growth. Regul., 35, 54−64.

Wang, F., (2017). Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites

and their contribution to ecological restoration: Mechanisms and applications. Crit. Rev.

Environ. Sci. Technol., 47, 1–57.

Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H., & Lee, I. J.,

(2012). Endophytic fungi produce gibberellins and indoleacetic acid and promote host-

plant growth during stress. Molecules, 17, 10754–10773.