95
Role of Endophytes, Plant Growth Promoting Rhizobacteria
Subramanian, P., Mageswari, A., Kim, K., Lee, Y., & Sa, T., (2015). Psychrotolerant
endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in
tomato plants (Solanum lycopersicum mill.) by activation of their antioxidant capacity. Mol.
Plant Microb. Int., 28, 1073–1081.
Suman, A., Gaur, A., Shrivastava, A. K., & Yadav, R. L., (2005). Improving sugarcane growth
and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant. Growth.
Regul., 47, 155–162.
Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmeuller, R., & Lou, B., (2010).
Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating
antioxidant enzymes, the expression of drought-related genes and the plastid-localized
CAS protein. J. Plant Physiol., 167, 1009–1017.
Suzuki, S., He, Y., & Oyaizu, H., (2003). Indole-3-acetic acid production in Pseudomonas
fluorescens HP72 and its association with suppression of creeping bentgrass brown patch.
Curr. Microbiol., 47, 138–143.
Theocharis, A., Clement, C., & Barka, E. A., (2012). Physiological and molecular changes in
plants grown at low temperatures. Planta, 235, 1091–1105.
Tian, C., Feng, G., Li, X., & Zhang, F., (2004). Different effects of arbuscular mycorrhizal
fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl. Soil Ecol.,
26, 143–148.
Timmusk, S., & Wagner, E. G. H., (1999). The plant-growth-promoting rhizobacterium
Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A
possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe
Interact., 12, 951–959.
Ting, A. S. Y., Mah, S. W., & Tee, C. S., (2012). Evaluating the feasibility of induced host
resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for
Fusarium wilt in banana plantlets. Biol. Control., 61, 155−159.
Verma, H., Kumar, D., Kumar, V., Kumari, M., Singh, S. K., Sharma, V. K., Droby, S., et al.,
(2021). The potential application of endophytes in management of stress from drought and
salinity in crop plants. Microorganisms, 9, 1729.
Vivas, A., Marulanda, A., Ruiz-Lozano, J. M., Barea, J. M., & Azcon, R., (2003). Influence of
a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant
responses to PEG-induced drought stress. Mycorrhiza, 13, 249–256.
Vos, C., Tesfahun, A., Panis, B., De Waele, D., & Elsen, A., (2012). Arbuscular mycorrhizal
fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne
incognita and the migratory nematode Pratylenchus penetrans. Appl. Soil Ecol., 61, 1–6.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R., (2007). Heat tolerance in plants: An
overview. Environ. Exp. Bot., 61, 199–223.
Wang, C., Wang, C., Gao, Y. L., Wang, Y. P., & Guo, J. H., (2016). A consortium of three plant
growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers
a better tolerance to chilling stress. J. Plant. Growth. Regul., 35, 54−64.
Wang, F., (2017). Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites
and their contribution to ecological restoration: Mechanisms and applications. Crit. Rev.
Environ. Sci. Technol., 47, 1–57.
Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H., & Lee, I. J.,
(2012). Endophytic fungi produce gibberellins and indoleacetic acid and promote host-
plant growth during stress. Molecules, 17, 10754–10773.